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Abstract
We prove that the axial anomaly, interpreted as the L2-index of the chiral Dirac
operator, for the standard Taub–NUT metric on R

4, vanishes. We show that the
essential spectrum of the Dirac operator of the generalized Taub–NUT metrics
introduced by Iwai and Katayama is the whole real line. We also show that
the axial anomaly for the generalized Taub–NUT metric is finite although the
Dirac operator is not Fredholm in L2(R4, �4, dsK

2).

PACS number: 04.62.+v

1. Introduction

The Taub–Newman–Unti–Tamburino (Taub–NUT) metrics were found by Taub [1] and
extended by Newman–Unti–Tamburino [2]. The Euclidean Taub–NUT metric has lately
attracted much attention in physics. Hawking [3] has suggested that the Euclidean Taub–NUT
metric might give rise to the gravitational analogue of the Yang–Mills instanton. This metric
is the space part of the line element of the celebrated Kaluza–Klein monopole of Gross and
Perry and Sorkin. On the other hand, in the long distance limit, neglecting radiation, the
relative motion of two monopoles is described by the geodesics of this space [4]. The Taub–
NUT family of metrics is also involved in many other modern studies in physics like strings,
membranes, etc.

From the symmetry viewpoint, the geodesic motion in Taub–NUT space admits a ‘hidden’
symmetry of the Kepler-type. We mention that the following two generalizations of the Killing
vector equation have become of interest in physics:

(i) A symmetric tensor field Kµ1...µr
is called a Stäckel–Killing (SK) tensor of valence r if

and only if

K(µ1...µr ;λ) = 0.
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The usual Killing vectors correspond to valence r = 1 while the hidden symmetries are
encapsulated in SK tensors of valence r > 1.

(ii) A tensor fµ1...µr
is called a Killing–Yano (KY) tensor of valence r if it is totally anti-

symmetric and it satisfies the equation

fµ1...(µr ;λ) = 0.

The KY tensors play an important role in models for relativistic spin- 1
2 particles having

in mind that they produce first-order differential operators of the Dirac-type which
anticommute with the standard Dirac one [5].

The family of Taub–NUT metrics with their plentiful symmetries provides an excellent
background to investigate the classical and quantum conserved quantities on curved spaces.
In the Taub–NUT geometry there are four KY tensors. Three of these are complex structures
realizing the quaternion algebra and the Taub–NUT manifold is hyper-Kähler [6]. In addition
to these three vector-like KY tensors, there is a scalar one which has a non-vanishing field
strength and which exists by virtue of the metric being type D.

For the geodesic motions in the Taub–NUT space, the conserved vector analogous to the
Runge–Lenz vector of the Kepler-type problem is quadratic in 4-velocities, and its components
are SK tensors which can be expressed as symmetrized products of KY tensors [6, 7].

To the hidden symmetry encapsulated into SK tensor kµν , the corresponding quantum
operator is

K = DµkµνDν

where Dµ is the covariant differential operator on the curved manifold. It commutes with the
scalar Laplacian

H = DµDµ

if the space is Ricci flat. That is the case for the standard Taub–NUT space which is hyper-
Kähler. Moreover, the commutator [H,K] vanishes even for Ricci non-flat spaces if the SK
tensor kµν can be expressed as a symmetrized product of KY tensors [5].

Iwai and Katayama [8–10] generalized the Taub–NUT metrics in the following way.
Suppose that a metric ḡ on an open interval U in (0, +∞) and a family of Berger metrics
ĝ(r) on S3 indexed by U are given, where a family of Berger metrics is by definition a right
invariant metric on S3 = Sp(1) which is further left U(1) invariant. Then the twisted product
g = ḡ + ĝ(r) on the annulus U × S3 ⊂ R

4 \{0} is called a generalized Taub–NUT metric
[11]. In what follows, we shall restrict ourselves to such generalizations which admit the
same Kepler-type symmetry as the standard Taub–NUT metric. These metrics are defined on
R

4\{0} by the line element

dsK
2 = gµν(x) dxµ dxν

= f (r)(dr2 + r2 dθ2 + r2 sin2 θ dϕ2) + g(r)(dχ + cos θ dϕ)2

where the angle variables (θ, ϕ, χ) parametrize the sphere S3 with 0 � θ < π, 0 � ϕ <

2π, 0 � χ < 4π , while the functions

f (r) = a + br

r
, g(r) = ar + br2

1 + cr + dr2

depend on the arbitrary real constants a, b, c and d. The singularity at r = 0 disappears by the
change of variables r = y2, hence dsK

2 is a complete metric on R
4. For positive definiteness,

we assume that a, b, d > 0 and c > −2
√

d . If one takes the constants

c = 2b

a
, d = b2

a2
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the generalized Taub–NUT metric becomes the original Euclidean Taub–NUT metric up to a
constant factor.

The necessary condition that a SK tensor of valence 2 be written as the square of a KY
tensor is that it has at the most two distinct eigenvalues [12]. In the case of the generalized
Taub–NUT spaces, the SK tensors involved in the Runge–Lenz vector cannot be expressed
as a product of KY tensors. The non-existence of the KY tensors on generalized Taub–NUT
metrics leads to gravitational quantum anomalies proportional to a contraction of the SK tensor
with the Ricci tensor [13].

In our previous paper [13] we computed the axial quantum anomaly, interpreted as the
index of the Dirac operator of these metrics, on annular domains and on discs, with the
non-local Atiyah–Patodi–Singer boundary condition. We found that the index is a number-
theoretic quantity which depends on the coefficients of the metric. In particular, our formula
shows that this index vanishes on balls of a sufficiently large radius, but can be nonzero for
some values of the parameters c, d and of the radius.

We also examined the Dirac operator on the complete Euclidean space with respect to this
metric, acting in the Hilbert space of square-integrable spinors. We found that this operator is
not Fredholm, hence even the existence of a finite index is not granted.

We mentioned in [13] some open problems in connection with unbounded domains. The
present work brings new results in this direction. First, we show that the Dirac operator on
R

4 with respect to the standard Taub–NUT metric does not have L2 harmonic spinors. This
follows rather easily from the Lichnerowicz formula, since the standard Taub–NUT metric
has vanishing scalar curvature. In particular, the index vanishes.

Entirely different techniques are needed for the generalized Taub–NUT metrics, since
they are no longer scalar-flat. We first note that the essential spectrum of the associated Dirac
operator is R, and we describe its domain. This is an application of the work done in [13]
and of the theory of �-pseudodifferential calculus developed in [14]. Next we show that the
dimension of the kernel is finite. This is by no means easy. The standard way of getting
such a finiteness result is proving that the operator is Fredholm on a larger L2 space. This
approach works for b- or cusp-operators via a conjugation argument (see [15]) but it fails for
�-operators when the dimension of the base is greater than 0, as is the case here.

Nevertheless, by applying the main result of [16], we manage to show that the dimension
of the kernel is finite. We must still leave open the question of computing the index for
generalized Taub–NUT metrics other than the standard one. We conjecture that it equals 0
and hence, unlike on annular domain or balls, the axial anomaly is never present. Our guess is
motivated by heuristically increasing the radius of a ball to infinity, and arguing that by [13],
the index stabilizes at 0 for large radii. Such an argument is of course incomplete, and even
dangerous in light of the fact that the Dirac operator is not Fredholm.

2. The axial anomaly and the L2-index

Let D denote the Dirac operator for the metric dsK
2, acting as an unbounded operator in

L2(R4, �4, dsK
2) with initial domain C∞

c (R4, �4), where �4 is the spinor bundle. The
generalized Taub–NUT metric is complete and smooth on R

4, hence the Dirac operator is
essentially self-adjoint. In quantum field theory, the axial anomaly is directly related to the
index of a Dirac operator as the difference between the number of linearly independent zero
modes with eigenvalue ±1 under the chirality operator γ5. By imposing the condition on zero
modes to be square-integrable, the axial anomaly can be interpreted precisely as the L2-index
of the chiral Dirac operator.
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We proved in [13] that D is not Fredholm. Thus, it is not clear at all whether the kernel of
D is finite dimensional or not! Moreover, even a small perturbation could, in principle, change
the index of the chiral part of D. This makes the analysis of the L2-index rather delicate.

Theorem 1. The Dirac operator associated with the standard Taub–NUT metric on R
4 does

not admit any L2 zero modes.

Proof. Recall that the standard Taub–NUT metric is hyper-Kähler, hence its scalar curvature
κ vanishes. By the Lichnerowicz formula,

D2 = ∇∗∇ +
κ

4
= ∇∗∇.

Let φ ∈ L2 be a solution of D in the sense of distributions. Then, again in distributions,
∇∗∇φ = 0. Since the metric is complete, the operator ∇∗∇ is essentially self-adjoint with
domain C∞

c (R4, �4), which implies that its kernel equals the kernel of ∇. Hence ∇φ = 0.
Now a parallel spinor has a constant pointwise norm, hence it cannot be in L2 unless it is
0, because the volume of R

4 with respect to the Taub–NUT metric is infinite. Therefore
φ = 0. �

We turn now to the generalized Taub–NUT metrics. We refer to [13] for previous results
on the quantum anomalies of these metrics on annular domains and on balls. We have noticed
in [13] that dsK

2 belongs to the class of fibred-cusp metrics from [14]. Moreover, its Dirac
operator D is elliptic but not fully elliptic in this calculus.

Proposition 2. Every elliptic symmetric �-operator A of order a � 0 with initial domain C∞
c

is essentially self-adjoint, and its domain is the fibred-cusp Sobolev space Ha
�.

Proof. Since A ∈ �a
� is elliptic, there exists G ∈ �−a

� an inverse of A modulo �−∞
� . Thus

AG = 1 − R1, GA = 1 − R2

where R1, R2 belong to �−∞
� . Note that R1, R2 do not have to be compact operators. Recall

from [14] the mapping properties of � operators: as in the closed manifold case, an operator
A of order a maps Hk

� into Hk−a
� for all real k, and moreover for a � 0,Ha is contained in the

domain of the closure of A with initial domain C∞
c . If φ ∈ L2 is in the domain of the adjoint

of A, i.e., Aφ ∈ L2 in the sense of distributions, then

Aφ ∈ H 0
� = L2 ⇒ GAφ ∈ Ha

�.

This means that φ − R2φ ∈ Ha
�. Now

φ ∈ H 0
� ⇒ R2φ ∈ H∞

� .

This implies that φ belongs to Ha
�. Hence

Ha
� ⊂ dom(A) ⊂ dom(A∗) ⊂ Ha

�

which ends the proof. �

From [14], D is Fredholm from its domain H 1
� to L2 if and only if it is fully elliptic. Thus

let us compute its normal operator. Outside 0 ∈ R
4 we set x = 1/r . Let

α(x) := 1√
ax + b

, β(x) :=
√

x2 + cx + d.

Let I, J,K denote the vector fields on S3 corresponding to the infinitesimal action of
quaternion multiplication by the unit vectors i, j, k. We trivialize the tangent bundle to
R

4\{0} � (0,∞) × S3 using the orthonormal frame

V0 = α(x)x2∂x, V1 = α(x)β(x)I/2, V2 = α(x)xJ/2, V3 = α(x)xK/2.
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Denote by cj the Clifford multiplication with the vector Vj . Since R
4\{0} is simply connected,

there exists a lift of this frame to the spin bundle. A long but straightforward computation
shows that in the trivialization of the spinor bundle given by this lift, the Dirac operator equals

D = c0

(
V0 − x2

2β(x)
(αβ)′ − x(xα)′

)
+ c1

(
V1 − αβ

2
c2c3

)
+ c2V2 + c3V3 +

x2α

4β
c1c2c3.

We assume for simplicity that b = 1. We can always reduce ourselves to this case by a
scalar conformal change of the metric.

The normal operator is obtained in two steps (see [14]). We first formally replace x2∂x

with iξ, ξ ∈ R, and xJ/2, xK/2 with τ2, τ3 where τ2, τ3 ∈ R are global coordinates on the
vector bundle φ∗T S2 over S3 (note that T S2 is not trivial, but its pull-back to S3 through the
Hopf fibration is). The second step consists in freezing the coefficients at x = 0. Thus for
ξ ∈ R, τ ∈ φ∗T S2,

N (D)(ξ, τ ) = iξc0 + ic(τ ) + Dvert

where

Dvert = c1

√
d

2
(I − c2c3)

is a family of differential operators on the fibres of the Hopf fibration S3 → S2 (recall that I
is a vector field with closed trajectories of length 2π ). We have observed in [13] that Dvert is
not invertible. Indeed, c2c3 is skew-adjoint of square −1 and hence exp(2πc2c3) = 1. This
shows that ker(Dvert) is made of spinors ψ satisfying

ψ(eitp) = etc2c3
ψ(p)

(the multiplication is in the sense of quaternions). The space of such spinors on the fibre over
each point in S2 has complex dimension equal to dim(�4) = 4.

Theorem 3. The essential spectrum of D is R.

Proof. Equivalently, since D is self-adjoint, we show that for all λ ∈ R,D−λ is not Fredholm.
By the discussion above, D − λ is Fredholm if and only if it is fully elliptic, i.e., if and only
if N (D − λ)(ξ, τ ) is invertible as a family of operators on the fibres of the Hopf fibration for
all ξ, τ . Fix a point p in S2. Then on the kernel of Dvert on the fibre over p,

N (D − λ)(ξ, τ ) = iξc0 + ic(τ ) − λ.

Set τ = 0; for ξ = λ, the spectrum of the matrix iξc0 is {±λ}, so iξc0 −λ cannot be invertible
for all real ξ . �

Remark 4. Note that D is not Fredholm on any weighted L2 space e
γ

x L2. This is because the
conjugate e− γ

x D e
γ

x acting in L2(R4, dsK
2) has normal operator

N
(
e− γ

x D e
γ

x

)
(ξ, τ ) = c0(iξ − γ ) + ic(τ ) + Dvert.

This operator vanishes on a spinor which fibrewise is in the kernel of Dvert, for ξ = 0 and for
a vector τ with |τ |2 = γ 2.

Nevertheless, we can prove the following finiteness result.

Theorem 5. The space of L2 zero modes of D has finite dimension.

Proof. Although the dimension of Dvert is not zero, it is at least constant when the base point
in S2 varies. Let h : [0,∞) → [1,∞) be a smooth function which equals r(a + br) for large
r. Set

gd := h−1 dsK
2.
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This is a conformally equivalent metric which falls into the class of d-metrics studied by
Vaillant [16]. Indeed, at infinity, in the variable x = 1/r ,

gd = dx2

x2
+ gH + x2 gV

x2 + cx + d2

where gH is a metric pulled back from the base, and gV is a family of metrics on the fibres of
the Hopf fibration, both constant in x. This is an exact d-metric with a constant dimensional
kernel of the ‘vertical’ Dirac operator, thus by [16, chapter 3], its Dirac operator Dd has a
finite-dimensional kernel in L2(R4, �4, gd).

We apply now the conformal change formula for the Dirac operator

D = h−5/4Ddh
3/4

(see, e.g., [16, appendix A.2]). Thus, if φ ∈ L2(R4, �4, dsK
2) is in the null space of D in the

sense of distributions, then Dd(h
3/4φ) = 0. Moreover, since volgd = h−2voldsK

2 and h−1 is
bounded, we see that

‖h3/4φ‖2
L2(R4,�4,gd )

=
∫

R
4
h−1/2|φ|2voldsK

2 < ∞.

Thus kerL2(D) injects into the finite-dimensional space kerL2(Dd). �

As a corollary, the axial anomaly is a (finite) integer number. We leave open the question
of computing this number for metrics dsK

2 other than the classical Taub–NUT metric, where
it is 0 by theorem 1.
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